Electromyography Analysis by Classification Complexity Estimation

نویسنده

  • NICLAS NILSSON
چکیده

Intuitive control based on myoelectric pattern recognition (MPR) can be used in clinical applications such as prosthetic limbs and Phantom Limb Pain treatment. Electromyography (EMG) patterns representing limb movements are learned by a pattern recognition algorithm to enable classification of future EMG observations. These EMG patterns are commonly constituted by descriptive features extracted from raw EMG. The complexity of the classification task is highly influenced by both the selection of such features and the differentiation between movements in the raw EMG. A reliable estimation of classification complexity would facilitate selection of features and elimination of detrimental EMG patterns. Two such algorithms, Separability Index and Nearest Neighbor Separability, were found to be highly correlated with classification accuracy and enable efficient feature selection for three classifiers commonly used for MPR (Linear Discriminant Analysis, Multi-Layer Perception and Support Vector Machine). The algorithms were implemented in the data analysis and feature selection modules of BioPatRec, an open source tool developed at Chalmers University of Technology for development and benchmarking of algorithms in MPR. The implementation included dedicated graphical user interfaces to ease visualization. This thesis deepens the understanding of the complexity of MPR and provides tools for prediction of classification performance and analysis of MPR applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)

Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...

متن کامل

Ant colony optimization-based feature selection method for surface electromyography signals classification

This paper presented a new ant colony optimization (ACO) feature selection method to classify hand motion surface electromyography (sEMG) signals. The multiple channels of sEMG recordings make the dimensionality of sEMG feature grow dramatically. It is known that the informative feature subset with small size is a precondition for the accurate and computationally efficient classification strate...

متن کامل

3D Scene and Object Classification Based on Information Complexity of Depth Data

In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...

متن کامل

Real-time controller for foot-drop correction by using surface electromyography sensor.

Foot drop is a disease caused mainly by muscle paralysis, which incapacitates the nerves generating the impulses that control feet in a heel strike. The incapacity may stem from lesions that affect the brain, the spinal cord, or peripheral nerves. The foot becomes dorsiflexed, affecting normal walking. A design and analysis of a controller for such legs is the subject of this article. Surface e...

متن کامل

Can Wavelet Denoising Improve Motor Unit Potential Template Estimation?

Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016